If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6j^2+j-8=0
a = 6; b = 1; c = -8;
Δ = b2-4ac
Δ = 12-4·6·(-8)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{193}}{2*6}=\frac{-1-\sqrt{193}}{12} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{193}}{2*6}=\frac{-1+\sqrt{193}}{12} $
| r/3+4=6 | | 8g=10+9g | | 15x/9=2x+4 | | y÷ 3/8= 4/9 | | 70-7=4c+17 | | -2+14x+9x-2=180 | | x+30=2x-15 | | 3c+1=-10 | | -6a+10a=8 | | 4(-6-m)=4m+10 | | s/3+5=7 | | 3(w+24)+6w=-331 | | (7v-5)=(9v-15) | | -6n–2=-5n | | -4z-9z=13 | | 18-4y=14 | | 7u=7=84 | | -8f=-10f+10 | | 3x×6=18 | | 10(2y+2)−1=2(8y−8) | | 3j=-10+8j | | 3-2+4y=4 | | 1,5x-7=2 | | (c+9)^2=64 | | -3(j+7)=18 | | 4•(2x+3)=3•(2x+2) | | 200*1,05^x=1800 | | y/9-2=2 | | 2x/3=5x/8+3/4 | | |p|-2/3=5/6 | | 2x/3=5x/8+3/8 | | 4y´´+9y=15 |